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ABSTRACT
This paper presents GoPose, a 3D skeleton-based human pose es-
timation system that uses commodity WiFi devices at home. Our
system leverages theWiFi signals reflected off the human body for
3D pose estimation. In contrast to prior systems that need dedi-
cated sensors, our system does not require a user to wear any sen-
sors and can reuse the WiFi devices that already exist in a home
environment for mass adoption. To realize such a system, we lever-
age the 2D AoA estimation of the signals reflected from the human
body and the deep learning techniques. Preliminary results show
GoPose achieves a high accuracy of 4.5cm in various scenarios.

CCS CONCEPTS
•Human-centered computing→ Systems and tools for inter-
action design.
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1 INTRODUCTION
Estimating the human pose is gaining increasing attention as the
human body offers a high degree of freedom for human-computer
interactions (HCI). It is a crucial building block to support a vari-
ety of emerging applications in smart homes, such as virtual re-
ality, and exercise monitoring. Traditional human pose estimation
systems mainly rely on either computer vision techniques or wear-
able approaches. However, the vision-based systems cannot work
in non-line-of-sight (NLoS) scenarios, whereas the wearable sys-
tems could be inconvenient. More recently, Radio Frequency (RF)
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based sensing becomes an appealing alternative for human pose
estimation [9] and does not require a user to wear or carry any
sensors [6, 8]. It also works under NLoS scenarios [5, 7].

In this work, we propose GoPose, a 3D skeleton-based human
pose estimation system by reusing commodity WiFi devices in a
home environment. Unlike the prior WiFi-based 3D human pose
estimations that only work for a set of predefined activities [2] per-
formed at a fixed position [4], our system works for free-form ac-
tivities even when the user is moving around, offering on-the-go
pose tracking for unseen activities. As GoPose could reuse com-
modity WiFi devices, it does not incur an additional cost, and thus
is promising for mass adoption for end-users in smart homes.

In particular, leverage the two-dimensional (2D) angle of arrival
(AoA) of the incident signals derived from the non-linearly spaced
antennas to provide spatial information for pinpointing the human
body. Then, we utilize the deep learning models of the convolu-
tional neural network (CNN) and the Long Short-Term Memory
(LSTM) to abstract the 3D human pose from 2D AoA. In particular,
the CNN is used to extract spatial dynamics (e.g., the locations of
limbs and the torso), whereas the LSTM is utilized to model tempo-
ral dynamics of human poses (e.g., trajectories of limbs and torso).

2 SYSTEM DESIGN
The basic idea of our system is to leverage the spatial informa-
tion of the 2D AoA and deep learning to model the complex 3D
skeletons of the human body for 3D pose estimation. Note that
the 3D skeleton consists of multiple joints (i.e., 14 joints listed in
Table 1). As illustrated in Figure 1, a WiFi transmitter sends out
signals to multiple WiFi receivers to probe human activities. The
system takes as input time-series Channel State Information (CSI)
measurements. This data is then preprocessed to remove noises.
The core of our system is 2D AoA estimation and 3D pose con-
struction from CSI. The system first combines both the spatial di-
versity and the frequency diversity to increase the resolution of 2D
AoA for differentiating signals reflected from different parts of the
human body. It then goes through static environment removal to
filter out the signals reflected from the indoor environments. Af-
ter that, the system combines the 2D AoA spectrum of multiple
packets at multiple receivers to fully capture the human body.

Next, our system leverages the deep learning models of CNN
and LSTM to construct the 3D pose of the human body based on
2D AoA spectrums. CNN captures the spatial feature of the human
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Figure 1: System overview.
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Figure 2: Examples of the constructed 3D
skeletons.

Table 1: Average joint estimation errors (unit:cm).

Joints Head Spine LShoulder LElbow LWrist RShoulder RElbow RWrist LHip LKnee LAnkle RHip RKnee RAnkle Overall
GoPose 3.3 3.1 4.3 5.7 8.0 4.4 4.9 6.9 3.3 3.4 4.3 3.6 4.0 3.9 4.5

body parts from 2D AoA spectrums, while the LSTM estimates the
temporal feature of the motions.

3 PERFORMANCE EVALUATION
We conduct the experiments with five laptops (one transmitter and
four receivers). Each laptop is equipped with Intel 5300 NIC con-
nected to three antennas. Linux 802.11 CSI tools [1] are used to ex-
tract CSI. We utilize a Microsoft Kinect 2.0 [3] to record the ground
truth of the 3D human pose. We evaluate our system in three real-
world environments including a living room, a dining room, and
a bedroom. Six volunteers (three males and three females) are re-
cruited. Each volunteer is asked to conduct both exergaming activ-
ities and everyday activities while she/he is walking around. Our
system is trained with 70% of the data set and tested with the re-
maining 30% of the data set. We use the joint localization error as
the evaluation metric. It is defined as the Euclidean distance be-
tween the predicted joint location and the ground truth.

Table 1 reports the joint localization error for each joint for Go-
Pose. We can find that the overall localization error is only 4.5cm.
The average joint localization error ranges from 3.1cm to 8.0cm. To
better visualize the performance of GoPose, we also presented the
constructed 3D human skeletons. Figure 2 shows four examples of
those constructed 3D skeletons. Although there are a few slight
deformations (e.g., in the red solid rectangle), it is easy to observe
that majority of the 3D poses estimated by GoPose are highly accu-
rate. These results also demonstrate that the proposed system can
accurately construct 3D moving human poses using WiFi signals.

4 CONCLUSION
This paper presents GoPose, a 3D skeleton-based human pose es-
timation system that offers on-the-go pose tracking in a home en-
vironment. In the GoPose system, the 2D AoA spectrum of the

signals reflected from the human body is leveraged to locate dif-
ferent parts of the human body, while deep learning is incorpo-
rated to model the complex relationship between the 2D AoA spec-
trums and the 3D skeletons. Preliminary results show that GoPose
is highly accurate in constructing 3D human poses.
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