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ABSTRACT

Earables (ear wearable) are rapidly emerging as a new platform to
enable a variety of personal applications. The traditional authenti-
cation methods thus become less applicable and inconvenient for
earables due to their limited input interface. Earables, however,
often feature rich around the head sensing capability that can be
leveraged to capture new types of biometrics. In this work, we pro-
pose ToothSonic that leverages the toothprint-induced sonic effect
produced by a user performing teeth gestures for user authentica-
tion. In particular, we design several representative teeth gestures
that can produce effective sonic waves carrying the information of
the toothprint. To reliably capture the acoustic toothprint, it lever-
ages the occlusion effect of the ear canal and the inward-facing
microphone of the earables. It then extracts multi-level acoustic
features to represent the intrinsic acoustic toothprint for authenti-
cation. The key advantages of ToothSonic are that it is suitable for
earables and is resistant to various spoofing attacks as the acoustic
toothprint is captured via the private teeth-ear channel of the user
that is unknown to others. Our preliminary studies with 20 partici-
pants show that ToothSonic achieves 97% accuracy with only three
teeth gestures.
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1 INTRODUCTION

Earables are rapidly emerging as a new platform to enable a variety
of personal applications due to their rich around the head sensing
capability. A recent report shows that earables like Apple’s AirPods
have much stronger and broader demand than smartwatches and
fitness trackers, and are the driving force of the wearable market [7].
Current projections indicate the market for earable devices will
reach over 5 billion dollars by 2030, and the earables are becoming
smarter and smarter [3]. There also have been increasing research
efforts to leverage earables to achieve tasks such as understanding
our fitness and sleeps, accessing information, identifying contextual
information, monitoring or tracking activities [2].

While earables show considerable promise, they also raise new
questions in terms of security. This is because much of the value
of the services offered by earables depends on the confidential and
personal information they capture, process and transmit. Moreover,
earables have also considerable promise as tokens that mediate
access to online accounts and diverse devices in smart environments.
It is thus critical to developing secure authentication for earables to
prevent unauthorized access to security-sensitive data and services.

However, adapting traditional authentication from other wear-
ables or mobiles can be challenging. Quite simply, earables lack
a suitable input interface to support rapid and reliable entry of
passwords or most of the traditional biometrics. Voice-based au-
thentication is convenient but has been proven vulnerable to voice
spoofing attacks [8, 9]. Despite the issue, earables provide novel
opportunities to improve or redesign approaches to authentication
due to their rich around the head sensing capability. For example,
recent work utilizes earable to sense ear canal and its deforma-
tion [6] for authentication. However, emitting acoustic sound to
probe the ear canal could be intrusive for those who are sensitive
to high-frequency sound.

In this work, we propose ToothSonic, a secure earable authen-
tication system that leverages the toothprint-induced sonic effect
produced by a user performing teeth gestures for user authentica-
tion. In particular, when teeth slide or strike against each other, part
of their mechanical energy is released in the form of sonic waves.
The harmonics of the friction- and collision- excited sonic wave are
dependent on the teeth composition, the dental geometry, and the
surface characteristics of each tooth [1]. The key insight is that the
sonic waves produce from a teeth gesture carry the information of
the toothprint. As every individual has a unique toothprint just like
our fingerprint, two users perform the same teeth gesture will result
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Figure 1: System flow of ToothSonic.

in distinct toothprint-induced sonic waves, which could be sensed
by the earables for user authentication. Compared with traditional
biometrics, it has several advantages.

Anti-Spoofing. The friction- and collision- excited sonic waves
are dependent on the toothprint, which is hidden in the mouth and
skull. It is thus more resilient to spoofing attacks compared with
traditional biometrics (e.g., fingerprint, face, and voice) that could
be exposed to others. In addition, the sonic waves travel through the
head tissues and skull channel, which hold the individual unique-
ness acting as a hidden and encrypted channel that modulates the
sonic waves. ToothSonic is thus resistant to sophisticated adver-
saries who can acquire the victim’s toothprint, for example, via the
dentist.

Wide acceptability. ToothSonic provides eye-free and hands-
free authentication when hands and eyes are occupied (e.g., carrying
objects or driving), whereas most traditional biometric approaches
require explicit user operation, such as pressing the fingertip on
a reader or posing the face or eyes to the camera. It is also more
socially acceptable than voice-based authentication in public places
(e.g., offices and libraries) as the sonic waves of teeth gestures are
much less perceptible and unobtrusive to others, which also protects
user privacy as oppose to audible voice password or paraphrase.

Implicit authentication. ToothSonic can also be exploited as
an implicit authentication method when teeth gestures are used as
a hands-free computer interface, for example potentially in "Switch
Access" services, and for people with motor impairments [4].

In our work, we first design a set of representative teeth ges-
tures based on the factors that impact the toothprint-induced sonic
waves. We choose six sliding gestures and four tapping gestures to
represent multi-level characteristics of teeth as well as to balance
the easy to perform. These gestures can produce effective sonic
waves that carry the information of the toothprint. As the sonic
waves propagate through the human face and skull to the ear canal,
they will be modulated and also significantly attenuated by the
teeth-ear channel. To reliably capture the attenuated sonic waves,
we choose the inward-facing microphone among various embed-
ded sensors on earables. Utilizing the inward-facing microphone
has one key advantage that the earbud and the ear canal form the
occlusion effect, which boosts the sonic waves, especially for the
low-frequency part that carries effective information of toothprint.
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The sensed sonic waves are then going through the pre-processing
to remove noise and to segment the data of each gesture. Then,
our system extracts fine-grained acoustic features that correspond
to the multi-levels of acoustic toothprint, and compares these fea-
tures against the user enrolled profile to perform authentication.
To evaluate ToothSoinc, we conduct experiments with 20 subjects
under various scenarios with different number of teeth gestures.
Experimental results show that it achieves 97% accuracy with only
three teeth gestures.

2 SYSTEM DESIGN

Our system comprises four major components, as shown in Fig. 1.
The system uses energy-based event detection to locate the gestures.
Next, our system segments the recorded signals into a sequence
of gestures by utilizing the Munich Automatic Segmentation sys-
tem [5]. To enhance the SNR, we apply the harmonic ratio to filter
our background noise when no gestures are performing.

For features extraction, we extract MFCC features (with delta
and delta-delta), Pitch, and log spectrum. Also, we locate the active
portion where the sonic waves have significant changes. We then
extract both sonorant and fricative components for a detailed anal-
ysis. Lastly, the user will be authenticated based on the extracted
features. Our system adopts a deep neural network to make an
authentication decision. Our system can make a decision based on
a single gesture. And by leveraging a sequence of teeth gestures,
our system could further enhance the authentication accuracy.

As shown in Fig. 2, we design 10 teeth gestures including 6 sliding
gestures and 4 tapping gestures. The sliding gestures contain occlu-
sion sliding, molar sliding, canine sliding, incisor sliding front/back,
incisor sliding up/down, and incisor sliding left/right. And the tap-
ping gestures are occlusion tapping, molar tapping, canine tapping,
and incisor tapping. These gestures cover the major factors that
affect the sonic waves of the toothprint when performing gestures.

The first 6 rows mark with blue in Fig. 2 reveal details of 6 differ-
ent sliding gestures. Sliding to a different direction will reflect the
dental mobility toward that specific direction. In addition, all slid-
ing gestures contain information about enamel rod patterns. They
could also show dental spacing because teeth generate sonorant
sound due to the gaps between each tooth. Meanwhile, the last 4
rows mark with red in Fig. 2 show details of 4 tapping gestures
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Figure 2: Tooth gesture and related biometrics.
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Figure 3: Authentication accuracy.

across different portions of teeth. The sonic waves generated by
tapping gestures reveal the mobility on the axis of Z, i.e., up and
down. Meanwhile, these sonic waves also disclose the enamel thick-
ness since the enamel dominates the contact area when the tapping
happens.

3 PERFORMANCE EVALUATION

We recruit 20 participants for the experiments including 9 females
and 11 males with an age range from 22 to 36. For the enrollment,
each participant is asked to sit in a living room environment and
wear the prototype at her/his habitual position. Next, they are re-
quired to repeat each teeth gesture five times. The extracted features
of these gestures are used to build the profile for each participant.
After enrollment, each participant is asked to repeat each gesture
at least 40 times. Each gesture repeat act as one authentication
attempt in our experiments.

Fig. 3 (a) shows the accuracy that leverages multiple gestures.
In sum, we could see that ToothSonic achieves high accuracy over
99% by combining a few gestures. In particular, our system could
achieve authentication accuracy of 99.81%, 99.53%, 98.95%, 96.82%
by with 6, 5, 4, 3 gestures, respectively.

Fig. 3 (b) shows the accuracy across 10 different gestures when
using only one gesture for authentication. No.1 to No.6 stand for
the six different sliding gestures and the left 4 gestures are tapping
gestures. We observed that the performance of the sliding gesture
is better than the tapping gestures. This is because sliding gestures
have a longer duration and contain more tooth participants with
different dimensions of information. Therefore, sliding gestures
contain more features than tapping gestures, and thus could provide
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cation system that leverages the toothprint-induced sonic effect
produced by teeth gestures for user authentication. ToothSonic
has several advantages over traditional biometric authentication
including anti-spoofing, wide acceptability, and conditionally im-
plicit authentication. We investigate representative teeth gestures
that produce effective sonic waves carrying the information of the
toothprint. Multi-level acoustic features are also extracted to rep-
resent intrinsic toothprint information. Our preliminary results
demonstrate the effectiveness of the ToothSonic in authenticating
earable users.
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